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Abstract—Since the information across all bands of the
cloud-contaminated region is missing, thick cloud removal for
remote sensing images (RSIs) is still a challenging problem.
Recently, the availability of rich spatial-spectral-temporal infor-
mation for multitemporal RSIs provides the possibility for
addressing the thick cloud removal problem. However, exist-
ing methods explore the holistic redundancy of multitemporal
RSIs and neglect the important semantic clue of multitemporal
images. In this letter, we propose a superpixel-oriented thick
cloud removal (STORM) model for multitemporal images, where
the multitemporal superpixel as the generic unit allows us to
exploit redundancy with semantic clue in a low-rank optimization
problem. To harness the resultant irregular fourth-order tensor
(i.e., multitemporal superpixels) in the optimization problem,
we cleverly introduce the weighted tensor to transform the
irregular tensor into the regular tensor, which naturally leads to
a standard low-rank tensor optimization problem. To tackle the
tensor optimization problem, we develop a proximal alternating
minimization (PAM)-based algorithm. Extensive simulated and
real experiments on multitemporal RSIs acquired by Sentinel-2
and Landsat-8 satellites demonstrate the superior performance
of the proposed method over the comparison methods.

Index Terms—Proximal alternating minimization (PAM),
semantic clue, superpixel, tensor ring (TR) decomposition, thick
cloud removal.

NOMENCLATURE
Scalar, vector, matrix, and tensor.
The (i1, i, i3, i4)th element of a 4-D ten-
sor X € Rixhxlxly

X, X, X
X (i, ia, 13, i4)

X, iz, i) Slice of a 4-D tensor X e RIxkxhxl
defined by fixing all but two indices.
X1 lp-norm of a tensor X', number of nonzero

elements of tensor X.
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Xz Frobenius norm of a tensor X and
1XNF = Qi iy 1X G iy 3, 0) D)2,

X The first type of unfolding operator along
the ith dimension, which is represented as
X(l) c RI;><1],...,1,'_11,'+1...14.

X Second type of unfolding operator along

the ith dimension, which is represented as
X(i) c Rl;xl,-ﬂ,...,lﬂl...l;,].

I. INTRODUCTION

EMOTE sensing images (RSIs) acquired from space-

borne satellites often suffer from cloud contamination,
resulting in missing ground information [1]. Therefore, the
image reconstruction of missing information poses a challeng-
ing task due to its crucial role in enhancing the quality of
images for subsequent applications [2], [3], [4], [5].

In the past, due to technical limitations, the observed RSIs
are usually single temporal. For small-scale regions missing,
inpainting methods [6], [7] utilize neighboring pixels to inter-
polate and fill in missing regions. For large-scale regions
missing, partial differential equations [8] are introduced to
reconstruct the missing data regions. Besides, exemplar-based
texture synthesis methods [9], [10] generate expansive image
regions from sample textures. Nevertheless, the above methods
are often significantly constrained by similar spatial contextual
structures due to the complete loss of information in regions
affected by cloud contamination.

Since satellites periodically capture RSIs, more multi-
temporal images can be obtained with the development of
technology. Multitemporal RSIs contain complement informa-
tion that contributes to missing region reconstruction [11].
Multitemporal-based image reconstruction methods mainly
include pixelwise methods and holistic-based methods. Pixel-
wise methods mainly search pixels with similar characteristics
to reconstruct the cloud-contaminated regions. Zeng et al. [12]
considered multitemporal images as referable information
to obtain the locally similar pixels and built a regression
model. Furthermore, Chen et al. [13] employed similar pix-
els exhibiting both local and nonlocal similarity to predict
cloud-contaminated target pixels by applying spatially and
temporally weighted regression. Benabdelkader and Mel-
gani [14] introduced a pixelwise approach that effectively
captures the spatial and spectral correlations within the image
to enhance the contextual reconstruction process. Due to the
independent selection of reference pixels for the missing pixels
without considering the neighboring pixels, the pixelwise
reconstruction strategy causes visual edge errors [15], [16].
Holistic-based methods utilize the low rankness of multi-
temporal RSIs to exploit holistic redundancy to reconstruct
all missing pixels simultaneously, which alleviates the visual
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Fig. 1. Comparison between the proposed superpixel-oriented method and
holistic-based method. (a) AccEgy with the corresponding percentage of the
average of singular values of all superpixels and the percentage of singular
values of holistic image along the spatial, spectral, and temporal dimensions.
(b) Tlustration of the proposed superpixel-oriented method and holistic-based
method for cloud removal.

edge errors to a certain extent. Chen et al. [17] reshaped
the multitemporal images to a low-rank matrix and con-
ducted subsequent low-rank reconstruction. Considering the
smooth property of the RSI, He et al. [18] proposed a
low-rank tensor completion method combining tensor ring
(TR) decomposition [19] with total variation (TV). Fur-
thermore, Wang et al. [20] flexibly exploited different low
rankness of TR factors by designing proper weights and
combined TV from three directions to recover the missing
information. Typical deep learning-based methods [21], [22]
remove thick clouds using neural networks with powerful rep-
resentation capability and have achieved satisfactory results.
Zhang et al. [23] combined the handcrafted prior with the
deep prior, which utilizes the low rankness of multitemporal
images and leverages deep spatiotemporal feature expression
ability by the 3-D convolutional neural network. However, the
holistic-based methods only consider the holistic redundancy,
which ignores the semantic clue of multitemporal images.

Motivation: To capture the semantic clue of multitemporal
RSIs, we utilize the multitemporal superpixels as the generic
unit, which consists of pixels with high semantic similarity
and possesses stronger low rankness compared to the holistic
image (i.e., superpixel achieves the same accumulation energy
ratio (AccEgy) with fewer singular values, see Fig. 1). Since
the irregular shape of superpixels limits the subsequent model-
ing, we introduce weighted tensors to represent the superpixels
regularly, which allows us to incorporate the multiscale seman-
tic clue coarse-to-fine to further boost the reconstruction
performance. Moreover, we leverage TR decomposition to
describe the spatial-spectral-temporal information within the
regular multitemporal superpixels and further construct a
low-rank optimization model for thick cloud removal.

This letter makes two main contributions.

1) We propose a superpixel-oriented thick cloud removal
(STORM) model for multitemporal RSIs, which can
exploit redundancy with semantic clue within the multi-
temporal superpixels by introducing weighted tensors to
represent the irregular 4-D superpixels regularly, leading
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to finer local details preservation compared to holistic-
based methods.

2) We develop a proximal alternating minimization (PAM)-
based algorithm to solve the proposed thick cloud
removal model. Extensive experiments on multitemporal
RSIs acquired by Sentinel-2 and Landsat-8 satellites
demonstrate that the proposed method achieves promis-
ing results, outperforming the comparison methods.

II. NOTATIONS

We summarize the notations used throughout this letter in
the Nomenclature.

III. METHOD

A. Problem Formulation

Assume that the observed image ) € R™*"*0*! consists
of the cloud-free image X € R™ X! and sparse cloud
component S € Rmxnxbxt and the model can be written as

y=X+S (D

where m x n, b, and t represent the size of spatial dimensions,
spectral dimension, and temporal dimension, respectively.

B. Multitemporal Superpixels

We suggest using multitemporal superpixels as the generic
unit, which is defined as regions in the image at different times
that contains pixels with similar color, texture, and semantic
information. First, we tackle the average image

1 o
Yave = E z Zy(’ 13, 14)
i3=1is=1

from the reference images 37 € Rm*nxbxtr a9 the segmentation
target, and the reference images are cloud-free images taken
from ¢, time nodes in the same scene, which contain the
complete structure and local details similar to the cloud-
contaminated images. Then, we employ the entropy rate
superpixel segmentation method [24] to segment the image
Yawe € R™*" for D times and obtain label maps containing
K; i =1,..., D) superpixels. According to the label maps,
we generate multiscale superpixels on the observed image
coarse-to-fine to obtain multiscale semantic clue. Since super-
pixels are irregular and hard to utilize directly, we convert them
into regular tensors by introducing weighted tensor W;; and
denote the ijth 4-D multitemporal superpixels as W;; © R;; X,
where © denotes the pointwise product. In particular, R;; is an
operator that finds out the envelope cube of the multitemporal
superpixels and )V,;; is a binary tensor that denotes the
superpixel region pixels by 1 and others by 0, respectively.
In this way, we can flexibly integrate the semantic clue of
multitemporal superpixels, and how to further characterize the
relationship among the multitemporal superpixels for multi-
temporal RSI reconstruction remains a challenge.

C. TR Decomposition

To fully utilize the redundancy of multitemporal super-
pixels, we leverage TR decomposition, which can describe
the spatial-spectral-temporal information within the multi-
temporal superpixels. For multitemporal superpixels W,;; ©
RijX € Rmixnmixbxt’ we decompose it into the following

. 1 y 2 )
3-D factor tensors, i.e., Qi(j) e Rnxmijxr2 gjj) € R xmijxrs;
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Time node 2 Time node 1 Time node 3 Time node 2 Time node 1

Time node 3

(a) (b) (©) (d)
Fig. 2. Comparison of cloud removal results by all methods at different time nodes on the Brazil dataset and Dongying dataset. (a) Degraded image. (b) TNN.
(c) TR. (d) TVTR. (¢) TRLRF. (f) STORM. (g) STORM+. (f) Ground truth.

gl.<j.3) € R3*0xr and g};‘) € R#*"™"_ Here, r = (r, 12, I3, '4)
denotes the TR rank. We represent the elementwise form as

.....

[Wij © Rij X1(i1, iz, i3, ia) =

In particular, js = j;. The TR decomposmon of the superpix-
els is simply rewritten as W;;OR;; X = ®(G;;), where & is the
operator to obtain approximated tensor through transforming
TR factors and G;; = {g,‘}), ,(12), 1(13>, g,(j”}

D. Proposed Model

Equipping with the above preliminary, we use [y-norm to
regularize the sparsity of cloud components and propose an
STORM model formulated as

min I1Sllo
st. W; OR;X =®(Gy), i=1,....D
i=1,...,K
YV=&X+S, Vo= (2

where D denotes the total number of the segmentation, K;

denotes the total number of the superpixels in the ith segmen-

tation, and €2 denotes the index set of cloud-free regions.
We reformulate problem (2) as

. 1%
Jmin ISl + 51 = & — S|F + 1g(X)
D K; ’3 5
+ZZEHW’]®R”X (G| ®
i=1 j=1
07
1(X) : {oo

with Q := {X : X = Yo} and p and B being regularization
parameters.

where
if X eQ
otherwise
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(e) () (€9] ()

As model (3) is hard to directly optimize, the PAM
algorithm is employed to optimize it by alternately updating

o 2
G = argmm ¥ (g,(,d)’ Xl Sz) n 5‘ g — gi(;z),zHF
g

ij

X = argminf(glﬂs X, 81) + EH'X - XIHJZF
v 2

S = argminf (¢!, A", S) + S| = 8'[;
N

where f(G, X, S) is the objective function in (3), g“’” denotes
the dth TR factor of the ijth multitemporal superplxel Wi ©
R; JX e Rmixnijxbxt | denotes the iteration index, and o >
0 is a proximal parameter.

1) Updating g,§4>.- The g}ﬁ subproblem is

(d),l+1
G
(d) ().l
_argmln—‘gu Qlj HF
B . Qd=1)+1 Ad) Ad+1:4.0) |
+E Wij O Rij X" — @(G;; 2Gii" Gij F

“
The solution to problem (4) is given by
Gi "+ = foldy (H) 5)

H=(B(W; 0 RyX') , GY) + oG
1
x (GG +a1) ©)

where I is an identity matrix and fold, [18] denotes the inverse
operator of the first mode-2 unfolding.

2) Updating X: The X subproblem is

. P o 2
A =argmin 2V - & = S5+ o[l X - A
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Time node 1

Time node

(©)

(b)
Comparison of cloud removal results by all methods at different time nodes on the Bourgogne dataset. (a) Degraded image. (b) TNN. (c¢) TR.
(d) TVTR. (e) TRLRE. (f) STORM. (g) STORM+.

(@)
Fig. 3.

TABLE I

QUANTITATIVE RESULTS BY ALL METHODS ON THE BRAZIL DATASET
AND DONGYING DATASET

Brazil
Timenode | Index | NN TR TVTR TRLRF STORM STORM+
MPSNR [32.745 42.130 45.070 43211 50.118 51.211
Time node 1| MSSIM | 0.9847 0.9795 0.9862 0.9831 0.9957  0.9971
SAM [0.0040 0.0048 0.0048 0.0042 0.0023  0.0021
MPSNR [33.865 40.491 42.487 42.069 45476 46.898
Time node 2 | MSSIM | 0.9808 0.9704 0.9791 0.9760 0.9892  0.9931
SAM [0.0086 0.0072 0.0073 0.0064 0.0041  0.0038
MPSNR [30.383 35.204 36.529 36.738 39.687 42.110
Time node 3 | MSSIM | 0.9551 0.9182 0.9382 0.9357 0.9732  0.9831
SAM [0.0198 0.0204 0.0210 0.0187 0.0133  0.0102
Dongying
Timenode | Index | TNN TR TVTR TRLRF STORM STORM+
MPSNR [33.543 36.530 35.054 37.451 39.441 40.511
Time node 1| MSSIM | 0.9694 0.9574 0.9519 0.9643 0.9760  0.9806
SAM [0.0075 0.0049 0.0054 0.0042 0.0033  0.0030
MPSNR [43.280 40.963 42.991 42578 47.689 48.294
Time node 2 | MSSIM | 0.9910 0.9816 0.9884 0.9867 0.9956  0.9962
SAM [0.0028 0.0039 0.0032 0.0030 0.0018  0.0019
MPSNR [33.170 31217 31.681 32.673 35213 35.576
Time node 3 | MSSIM | 0.9625 0.9030 0.9342 0.9291 0.9576  0.9641
SAM [0.0147 0.0172 0.0188 0.0225 0.0240 0.0184
D K B ,
+ D 5w 0 RyX — @G, + o).
i=1 j=1
)
The problem can be solved by
Pl+1 5
X = (X )g reqn ®)

Va, X eQ
where X1 = [p(V - S+ 2, T, (@G + ')
QT +B8%7, Zf’zl Wij © Rl Rij + aJ], @ denotes the
pointwise division, €2 denotes the index set indicating cloud
region positions, and J is an all-ones tensor whose elements

are all 1.
3) Updating S: The S subproblem is

. p a 2
! = argmin [ Sl + 1Y = &' = S| + 5|5 — &[5

©))
The closed-form solution of problem (9) is
_ Xl+l Sl
S —hard . <p(y ) o ) (10)
ot p+a
where hard is hard-thresholding operator
z—e, ifz>ce€
hard = 11
ard (2) {0’ oo (1)

(@
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(e ® (8)

The developed algorithm to solve the proposed STROM
model is described in Algorithm 1.

Algorithm 1 PAM Algorithm for STORM
Input: The observation ) and corresponding index set €2;
Initialization: X° = S°= O;

1: while not converged do

2: for each segmentation i =1,2,..., D do

3: for multitemporal superpixels j = 1,2, ..., K; do
4: for each TR factord =1,2,3,4 do

5: Update g};’““ via Eq. (5);

6: end for

7: end for

8: end for

9: Update X'*! via Eq. (8);

10: Update S'*! via Eq. (10);

11: end while
Qutput: The reconstructed image X’;

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed method
STORM, we select four methods for comparison, includ-
ing TNN [25], TR [19], TVTR [18], and TRLRF [26],
on simulated and real cases. We perform single superpixel
segmentation (K 10) denoted by STORM and corre-
sponding multisegmentation (K; = 10, K, = 70) denoted by
STORM+. We employ the mean peak signal-to-noise ratio
(MPSNR), mean structural similarity index (MSSIM), and
spectral angle mapper (SAM) to evaluate the resemblance
between the reconstructed image and the ground truth [27].
Higher MPSNR and MSSIM values and smaller SAM values
indicate a better reconstruction effect.

A. Results on the Simulated Experiment

We select the Brazil' dataset and Dongying? dataset as the
simulated datasets to verify the superiority of the proposed
methods (STORM and STORM+). Each time node in the
datasets taken by Sentinel-2 comprises four spectral bands
(bands 2—4 and 8) with a spatial resolution of 10 m. The sizes
of datasets are both 400 x 400 x 4 x 6. We design different
masks to simulate clouds of diverse shapes and sizes at the
first three time nodes, and the last three time nodes are used
as reference images.

Thttps://www.theia-land.fr/en/data-and-services-for-the-land/
Zhttps://earthexplorer.usgs.gov
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The quantitative results are presented in Table I, with the
highest MPSNR, MSSIM values, and smallest SAM high-
lighted in bold. As shown in Table I, our method performs
almost the best on all metrics on all datasets, whose MPSNR
values achieve an improvement of about 2-5 dB compared
to the second-best method. Due to the utilization of semantic
clue of superpixels, the best performance is obtained from
STORM. We show the visual comparison in Fig. 2, revealing
that STORM can reconstruct the details and textures of the
cloud-contaminated regions better compared to the TR, TVTR,
and TRLRF. From the results of TNN on the Dongying dataset,
we can observe a distinct color difference when comparing the
reconstructed result and the ground truth. In conclusion, the
proposed STORM+ achieves the closest results to the ground
truth compared to all comparison methods. Compared with
the STORM method, the STORM+ method can provide more
comprehensive local details indicating the effectiveness of the
multiscale strategy in our method.

B. Results on the Real Experiment

We select the Bourgogne® dataset acquired by Landsat-8
to test the effectiveness of the proposed methods (STORM
and STORM+) in real-world scenarios. In this section, the
subimage of size 600 x 600 x 7 x 4 is utilized, and seven
spectral bands (bands 1-7) with a spatial resolution of 30 m
are encompassed in each time node. The relevant masks
of clouds are available online.> Fig. 3 presents the visual
results of all methods, with the red box magnified four
times for more detailed observation. We can observe that
STORM and STORM+ reconstruct the details and textures
of the cloud-contaminated regions best, which verifies the
effectiveness of the proposed STORM and STORM+-. This
result is attributed to the introduction of semantic clue, which
promotes local details preservation in complex scenes.

V. CONCLUSION

In this letter, we have proposed an STORM model for
thick cloud removal. First, multitemporal superpixels are
employed as the generic unit, which exploits redundancy with
semantic clue. Besides, the weighted tensors are suggested
to handle the challenge of superpixels’ irregular shape and
further incorporate the multiscale semantic clue in regular
4-D tensors. Then, we utilize TR decomposition to describe
spatial-spectral-temporal information within multitemporal
superpixels and establish a low-rank reconstruction model.
Finally, a PAM-based algorithm is developed to solve the
proposed model. Extensive experiments on multitemporal RSIs
taken by Sentinel-2 and Landsat-8 satellites have demonstrated
that the STORM method is superior to the compared methods.
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